(1/x*10^-3)=25

Simple and best practice solution for (1/x*10^-3)=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/x*10^-3)=25 equation:



(1/x*10^-3)=25
We move all terms to the left:
(1/x*10^-3)-(25)=0
Domain of the equation: x*10^-3)!=0
x∈R
We get rid of parentheses
1/x*10^-3-25=0
We multiply all the terms by the denominator
-3*x*10^-25*x*10^+1=0
Wy multiply elements
-30x^2*1-250x^2*1+1=0
Wy multiply elements
-30x^2-250x^2+1=0
We add all the numbers together, and all the variables
-280x^2+1=0
a = -280; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-280)·1
Δ = 1120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1120}=\sqrt{16*70}=\sqrt{16}*\sqrt{70}=4\sqrt{70}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{70}}{2*-280}=\frac{0-4\sqrt{70}}{-560} =-\frac{4\sqrt{70}}{-560} =-\frac{\sqrt{70}}{-140} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{70}}{2*-280}=\frac{0+4\sqrt{70}}{-560} =\frac{4\sqrt{70}}{-560} =\frac{\sqrt{70}}{-140} $

See similar equations:

| 2h-32=44 | | y=7-2(3) | | 19x=86 | | -5(x-8)=2(3x-35) | | 1.8(5-2y)=0.9 | | 3b+4=62 | | 0=-2x+1+x+2 | | 2+4x-2x=-4 | | 3x+3(2x+5)=6 | | -15-4x=3(2-x) | | x^-16x+5=0 | | 11=6v-19 | | -3(3x+7)=35-x | | x^2+(x+2)^2=(2x-2)2 | | 6=14-2s | | 8t(t+3)=2t-15 | | 5/8y+12=18 | | 13=16-j | | 26=m10-14 | | 3x-3(x-2)+x= | | 21-7x=-28 | | 45x^2+87x+36=x | | 4x(2x+3)=176 | | 26=10m-14 | | 10m(m+1)=m-2 | | A(s)=100s-(2s*s) | | 3=12-3f | | A(s)=100s-(2s*2s) | | j+5=14 | | 10a-7=9a+31 | | j+5=15 | | 4.5/3=5x/(5x/1.5) |

Equations solver categories